
“Why Can’t I Learn Programming?”
The Learning and Teaching Environment of

Programming

Zsuzsanna Szalayné Tahy1 and Zoltán Czirkos2

1 Eötvös Loránd University, Faculty of Informatics
Budapest, Hungary

2 Budapest University of Technology and Economics, Department of Electron Devices
Budapest, Hungary

http://www.eet.bme.hu/

sztzs@caesar.elte.hu, czirkos@eet.bme.hu

Abstract. This article focuses on teaching a textual programming lan-
guage as the first programming language (allowing for previously studied
visual programming languages). The teaching process is placed into a real
educational environment in connection with the national curriculum, so-
cial expectations and students reactions. In order to write a program,
several abilities and pieces of knowledge are required. There are tools
and syllabuses for teaching these skills but the result mainly depends on
the personality of the students and teachers. We use the term “Learning
Activity Unit” to describe the teaching–learning process of program-
ming and detecting gaps in every day practice. This very simple model
is practical for teachers to detect problems. In the global view of teaching
programming, the implementation of the curriculum could be analysed.

Keywords: computational thinking, curriculum design, programming,
teaching-learning process, Learning Activity Unit.

1 Introduction

Twenty years in practice gives many impressions in teaching informatics. Focus-
ing on textual programming, the main concepts are almost the same, but the
tools have changed. The choice of language has changed from Pascal to C-based
languages and nowadays the object oriented programming concept is preferred.
Several methods have been tested to improve the effectiveness of teaching. At
the beginning it was 10-20% of the students who had to learn programming,
nowadays this number should approach 100% [3]. The extension of teaching pro-
gramming skills raises new question: Is everybody able to learn programming?

Teachers have some practice based on other subjects to use special methods
in several cases. There are studies on how to teach some skills in a selected,
already-known group, or well-known prior knowledge/abilities [1]. However, the
digital age is too young to know all the answers.



2 Zsuzsanna Szalayné Tahy and Zoltán Czirkos

The Learning Activity Unit is a diagnostic tool used for analysing expec-
tations and individual achievement of knowledge and skills required to develop
computational thinking [4]. This article presents some sample cases to demon-
strate how this tool can be used in the learning environment analysis. Curric-
ula, syllabuses and lesson plans can be analysed by the Learning Activity Unit
concerning aims, methods and timing. This analysis gives a global view of the
learning process, guiding the long-term work. The presented collection is far from
being complete but the examples describe real problems or contra-productive
practices and their recommend solutions.

2 Programming – The Learning Activity Unit Framework

In this section we present the Learning Activity Unit (LAU), a framework whose
main objective is to understand the learning process of programming, and to di-
agnose learning problems. The Learning Activity Unit encompasses the complete
learning cycle, from the starting point, when the students first meet a concept
of programming, to the point when they are able to use it on their own. The
phases defined by the model are as follows:

1. Initial learning: As the first step, programs, solutions of programming
tasks are written by following the instructions.
A) Active learning: students are motivated to learn, they read sources,

listen to lectures. They follow the logic of problem solving.
M) Moderated learning: students make notes; they observe what the teacher

does and try to do the same.
P) Passive learning: students are outside observers, they scroll the readings.

2. Trying phase: students (or the teacher) explore how the new knowledge or
skill could be used.

3. Experimenting phase: students have to change the written program, or
they have to solve some very similar tasks with the help of teacher.

4. Pause: some learned details could be forgotten.
5. Using:

a. Repeating means repeating the learned things in phase 1.
b. Modifying: students are able to learn creativity, but only at the original

level presented.
c. Creating new programs could give the sense of success.

6. Back to phase 4 or phase 1. It implies a lifelong learning process; however,
the process could be broken in every phase.

2.1 The Using of the Learning Activity Unit

The LAU is not homogeneous and not absolute. It is a practical tool to focus on
the main points of the learning and teaching process of programming. We apply
LAU in a similar way to how programmers work with functions and threads.
Every LAU allocates a part of capacity in the human’ mind. There are LAUs



The Learning and Teaching Environment of Programming 3

running parallel, calling each other and embedded into each other. The LAU
Model – with the relationships between LAUs – describes a complex learning
process.

There are many cases in the preparatory period of learning textual program-
ming, where we can observe this activity model with the return to phase 1,
for example learning a visual language or learning how applications work. If a
curriculum is well-structured, these studies develop many important skills and
always gives new knowledge to the student. On the other side, there are many
courses, programming actions what provide only a foretaste of the knowledge,
a short insight, but no more. There are courses focusing on phases 1–3. These
courses seem to be very successful, but the outcome is useless.

For illustration only, a humanities educated parent wrote: “My 12-year old
daughter is very good in logical tasks. She does programs in Scratch but follows
always the trodden path. . . She attends courses but it seems there is no novelty
for her.” However, we do not explore those courses, but this opinion shows two
problems: 1) This girl prefers 5a Repeating activity and courses do not motivate
her to choose 5c Creating. 2) These courses are only good for wakening up
interest for programming, but cannot improve or develop the knowledge to a
usable level. Even if courses could develop skills, they are not in connection,
they are not structured therefore every course starts from the same basic level.

The LAU seems to be simple enough to use in every day practice, never-
theless, it fits to Bloom’s renewed taxonomy and takes into consideration the
effectiveness of learning methods as well as the forgetting rates and benefits of
linear and spiral curriculum design.

3 Programming Curriculum in Hungary

According to the Hungarian National Curriculum1, students are required to learn
programming. The advanced level secondary school final exam in Informatics
includes a task testing the algorithmic and programming skills. The history of
informatics education is similar to the Polish system, described in 2015 at the
ISSEP conference [5]. The Hungarian National Curriculum was accepted in 2008
but it was renewed in 2012, expanding knowledge expectation compared to the
former version. Skill expectations are similar to the new Polish Curriculum but
supplemented with topics of hardware and network knowledge (e.g. ISO OSI
Model). Unfortunately, the Core Curriculum2 – prescribed by government –
cut the number of lessons to the third compared to the National Curriculum.
However, the Hungarian IT sector, the representatives of universities and civil
groups (e.g. parents) demand an increase number of lessons of Informatics.

The elimination of informatics lessons has two consequences. On the side of
public education, skills and knowledge is to be learnt in only one third of the

1 Nemzeti alaptanterv (National Curriculum), http://www.kozlonyok.hu/nkonline/
MKPDF/hiteles/MK12066.pdf, Magyar Közlöny vol 66 (2012) (in Hungarian)

2 KT 9-12G (Core Curriculum of informatics for grade 9-12) http://kerettanterv.

ofi.hu/03_melleklet_9-12/3.2.16_informat_9-12.doc (2012) (in Hungarian)



4 Zsuzsanna Szalayné Tahy and Zoltán Czirkos

required time. Although this seems to be nonsense, it is written in the certified
syllabus3. Analysing the syllabus, timing limits teaching to the list of concepts.
Students hear (or do not hear) the concepts but there is no time to practice
them. Described in LAU terms, this is only part of the Initial learning (1),
because it is based on informal learning, too. The Trying (2) is homework,
the Experimenting (3) and sometimes the Using (5) would be part of other
subjects. In many cases, the Pause phase is too long, or there is too much time
between the next Initial learning and previous Using phase.

On the other side, many companies from the IT sector try to supplement the
programming lessons, to fill in the gaps of public education. But this effort cannot
reach the goal because they are not able to ensure long-term development. A 10-
hours crash course, or a 30-hours weekend-only courses, maybe a one-week-long
camp or a half-year-long course in learning programming gives “a sneak peek”.
It looks very good, but these courses are not connected to each other, therefore
long-term effectiveness is uncertain. In the view of LAU: Phases 1–3 are prepared
but phase 4 is too long, phase 5 may never come. The return (loop back to phase
1) will result in random development or backwardness. Moreover, this practice is
very dangerous at the point when governmental education management envisions
the teaching of informatics as activities of summer camps.

4 Introduction to Textual Programming

4.1 Expected skills and hidden gaps

In order to code a program, one needs almost a dozen skills. Studies of teach-
ing programming explore the role of these skills; describe methods of developing
one or a group of skills [6]. Modern educational systems offer opportunities to
improve these skills before learning textual programming. Skills and knowledge
are mentioned in different ways according to the focus of research. The follow-
ing skills were found useful to learn before text-based programming: 1) typing,
2) mother tongue based comprehension, 3) basic reading and writing in English,
4) practice in multi window software using, 5) abstraction, 6) logical decision,
7) recognizing and defining data types (boolean, character, integer, real, string),
8) recognition and defining data structures (array, 1D, 2D, 3D, record, graph),
9) object modelling, 10) algorithmic thinking (sequence, alternation, loop) in
real word situations, 11) understanding and using functions of applications (e.g.
text editor, spreadsheet, animation designer), 12) system (process) modelling.

The list, of course, may not be complete, but the more important aspect is
the knowledge level of skills. When one writes a for-loop, six skills are activated
from the above mentioned ones, and every, missing skill is a gap. As it is de-
scribed in [2], “small steps” are very important in effective teaching. The authors
of this article analysed books and described a tool for detecting gaps in text-
books, but practically there were no textbooks without big gaps. It seems that

3 Informatika 10. tanmenet (Syllabus for grade 10) http://ofi.hu/sites/default/

files/attachments/nt_17173_informatika_10.docx (2016) (in Hungarian)



The Learning and Teaching Environment of Programming 5

text-based programming is too complex, and the success of teaching text-based
programming depends on how many items are known before using them.

This problem can be observed at the Basics of Programming 1 course4 of
Engineering Information Technology at BME. We conducted an experiment in
2014, asking 3–10 questions from 525 students every week about the topic of
the lecture. For example, after the second lecture, 225 students answered this
question about variables:

Have you ever heard about variables before this lecture?
1. I haven’t ever heard about them, this is new for me.
2. I have heard about them, but I’ve never tried them.
3. I have seen, I’ve tried in some cases
4. I have used this knowledge, I am experienced.

The average result of the first test written by students who used variables before
the course (ie. who had chosen answers 3. or 4. in the questionnaire) was 72%.
On the other hand, those who had chosen answers 1. or 2. only scored 46% in the
test. The lack of prior knowledge caused difficulties in their learning progress.

In September 2015 we asked the 565 new-coming students to fill in a 26-item
questionnaire about the input skills and knowledge and some question about
the learning habits. There were 346 students who answered 77% of the questions
on average. We correlated the answers with the test results, created a table of
26 rows (the questions) and 13 columns (the test results) with values between
0.45 and −0.13. Selecting the highest three values from every column (for the
tests of different topics during the semester) we get the highest ranking, most
correlating questions. This way we found that the most relevant prior skills are:

1. Knowing data structures (12) – What kind of data structures have you used?
2. Knowing Code::Blocks (11) – Have you used Code::Blocks before?
3. Programming (6) – How many points did (could) you get in the secondary

school final exam’s programming task?
4. Maths knowledge (6) – What mark did you get in the Maths exam?
5. Algorithms (2) – What kind of algorithms have you learnt?
6. Physics knowledge (1) – How would you mark your physics knowledge?

Physics was in connection with the homework, the students’ own programmed
game. We asked about music, spreadsheet, databases, Nassi-Shneiderman chart,
languages, grammar and other topics as well. We can say that the most correlated
skills are the most relevant in the course.

We would like to extend our research to the Eötvös Loránd University, Fac-
ulty of Informatics. There are also almost 600 students but the courses are in
Maths science while BME is the centre of engineering education. The gathered
information would be very important to determine programming expectations
in secondary schools.

Even though we still have to clear the details, we can say at this moment that
the compensating the lack of prior knowledge needs more time. It involves the

4 Z. Czirkos, G. Nagy: INFOC Portal for course https://infoc.eet.bme.hu/



6 Zsuzsanna Szalayné Tahy and Zoltán Czirkos

multiple usage of the LAU, and the preparation phase should be longer for suc-
cessful teaching. The formal courses of Introduction to Computer Science, Basics
of Programming or Introduction to <any text-based> Programming Language
starts with a huge gap for real beginners.

4.2 De-gap before start

Teaching programming must be preceded by a long preparatory period, when
students learn particular competences. This period starts at the beginning of
education and the effectiveness depends on the awareness of educators. Many
people – students, parents, teachers and experts among them – say, the prepara-
tory period is not for programming. However, as cooking starts with shopping
the ingredients, learning textual programming starts with learning the necessary
skills. Shopping is much more effective if you know what you want to cook. By
the analogy, it would be very useful if primary school teachers would be able to
write codes. Not to actually teach programming, but to understand how they
should teach the basics.

5 Summary

Textual programming is based on several abilities and skills. The successful learn-
ing programming requires the creative usage of basics, therefore text-based pro-
gramming should be preceded by a designed preparatory period. We described
a Learning Activity Unit model based on main concepts of pedagogy to charac-
terize the skill level of computational thinking. Having applied it for analysing
Hungarian curricula and courses, we detected problems of effectiveness: only
Initial learning is planned but sometimes it is also compacted. Our further
research will focus on teaching practice of programming in classroom.

References

1. Heintz, F., Mannila, L., Nyg̊ards, K., Parnes, P., Regnell, B.: Computing at School in
Sweden – Experiences from Introducing Computer Science within Existing Subjects
In: A. Brodnik, J. Vahrenhold,(eds.) ISSEP 2015. LNCS 9378, pp. 118–130. Springer,
Heidelberg (2015)

2. Hofoku, Y. Cho, S., Nishida, T. and Kanemune, S.: Why is programming difficult?
- Proposal for learning programming in “Small Steps” and a prototype tool for
detecting “gaps” In: ISSEP 2013, pp. 13–14 Universitätsverlag Potsdam, 2013.

3. Informatics Europe & ACM Europe Working Group on Informatics Education: In-
formatics education: Europe cannot afford to miss the boat, (2013)

4. Lee, I. et al.: Computational Thinking Resources, hhttps://csta.acm.org/

Curriculum/sub/CompThinking.html [Accessed on 21-07-2016] (2011)
5. Syslo, M. M., Kwiatkowska, A. B.: Introducing a New Computer Science Curriculum

for All School Levels in Poland In: Brodnik, A., Vahrenhold J.,(eds.) ISSEP 2015.
LNCS 9378, pp. 141–154. Springer, Heidelberg (2015)

6. Szlávi, P. and Zsakó, L.: Methods of teaching programming 1(2). In Teaching Mathe-
matics and Computer Science, 1.02, pp. 247-258. Univ. of Debrecen, Hungary (2003)


