
XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

Linear Search – the Breaks in Teaching-Learning Practice

SZALAYNÉ TAHY, Zsuzsanna – CZIRKOS, Zoltán HU

Abstract: Linear search is one of the well-known algorithms used in everyday practice but its
coding is difficult for many. Students’ learning practices break on linear search. There are
advanced coding tools, proven methods and common tricks, but using any of these causes
conflict on learning programming between teacher and students. Typical conflict is given in
context of using the break instruction while coding linear search. Why do secondary school
students love and why do teachers hate the “break;”? Is the break instruction really “to
be considered harmful” when learning programming? How can teachers resolve conflicts
considering the aims of learning the algorithms, coding and structured programming,
improving problem solving and computational thinking skills?

Key words: linear search, learning methods, teaching methods, computational thinking.

1 Introduction

There are eight methods for teaching programming according to [1]: methodical/algorithmic
oriented; data oriented; specification oriented; problem type-oriented; language oriented;
instruction oriented; mathematics oriented; hardware oriented; model oriented. In teaching
practice, these methods are combined considering the curriculum and – sometimes – the students’
preparatory skills. Having been teaching programming for years, and having tried many
combinations of these methods, a critical topic was recognized that determines the students’
progress in programming. This topic is the linear search in coding practice.

In a typical class, there are students with different levels of knowledge.

1. Beginners, who have learnt linear search algorithms but cannot apply it. (They say they need
some if() or they would like to use spreadsheets and built in MATCH() function.)

2. “Programmers” who developed software on iPhone, Android or web environment.
3. “Programmers” who are “perfect” in writing PHP or using script languages.
4. Talented students who solve the problem in special ways.
5. Advanced students who understand the problem, identify the algorithm and try to transform

the general solution to the actual code.

Giving a problem with search as a sub-problem, there are only a few students who code the
expected solution. The next group writes working code but the methods, or the applied algorithm
is not correct. Furthermore, there is the third, usually the biggest group, who cannot implement
the solution. After being shown the right code, most of the students can reproduce the solution
but the next assignment raises the same problem again. Given more assignments, some students
give up learning programming saying they will never be able to understand it. Another group of
students give up learning in class because they think they can do it better on their own. In addition,
there is the teacher with many questions: How to motivate students to learn, to think? How to
motivate them to write clean code and structured programs?

Most teachers in Hungary, who teach programming, learnt programming and methodology at
ELTE IK1. They learnt structured programming using the methodical/algorithm oriented method
described in [1] first. They were adults and they had to have strong mathematical abstraction and
logical skills. They teach mainly the way they learnt. One of the reasons why students cannot learn
the same way is that they do not have advanced abstraction and logical skills.

1 Eötvös Loránd University Faculty of Informatics (Eötvös Loránd Tudományegyetem Informatikai Kar)

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

Moreover, there is a hidden problem: what is the aim of teaching programming? Are students
expected to write any working code or do they have to learn structured programming? The aim of
public education is not to teach a profession but it cannot be independent of it. Two of the most
prominent articles on this topic were written by Dijkstra [2] and Robert C. Martin [3]. Although,
many famous programmers and scientists expressed their opinions, the learning path of linear
search is different from practicing a profession in the didactical point of view. The problem of
teaching linear search arises on the mailing lists and forums like the topic on CAS Community of
teachers in UK: Using break and continue in loops [4], or threads on IT teachers’ mailing list in Hungary:
Jumping out from loop with condition [5], and Programming decision [6].

Seeing that the exact aim of teaching programming is not defined clearly in Hungary, we
analyse the practice and contradictions and suggest methodological solutions.

2 Educators’ Practice in Programming Linear Search

Experiencing problems in teaching linear search programming, we studied the taught coding
practice. We explore the teaching method of basics of programming courses at ELTE IK [7] and
BME-VIK [8]. They are the most important courses in Hungary, both having 500-600 students
each year. The teaching practice of programming methods is very different in the two courses. The
published comparative analysis [9] detects many differences. ELTE IK follows
methodical/algorithmic- and specification-oriented method and develops a theoretical,
mathematical knowledge. The Computer Science degree program focuses on programs and
modelling. BME-VIK2 combines more methods as it develops practical programming knowledge.
The main methods are data-, problem-, language- and instruction-oriented. The Engineering
Information Technology degree program develops programming skills.

Beside the written and taught programming principles, we explored the educators’
programming practice. All educators were asked to do a programming assignment as they would
do it for private use and write down every thought, the decisions and mistakes they have made
while coding as a comment.

There were four groups:

A. educators who teach Basics of Programming at ELTE Computer Science faculty;
B. educators who teach Programming Fundamentals at BME-VIK Engineering Information

Technology;
C. educators who teach System Modelling and Formal Methods at BME-VIK Engineering

Information Technology;
D. secondary school teachers involved in the final exam of informatics on advanced level.

Knowing that the task enquired about the personal experiences of the programmes and the
aim of the task was hidden, each answer is of high importance. They gave a valuable insight into
programming and coding practice of which the programming methods of linear search are
highlighted in the following.

The task was the same for groups A, B and C. It was a part of an earlier final exam about
music channels3: 1. Read data of songs from file. 2. Determine the number of data records. 3. Find
the first and the last occurrence of “Eric Clapton” and count the time elapsed. 4. Find the last
occurrence of “Omega Legend” and tell the title of music on other channels played at the same
time.

2 Budapest University of Technology and Economics Faculty of Electrical Engineering and Informatics (Budapesti

Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar)
3 http://dload.oktatas.educatio.hu/erettsegi/feladatok2006osz/emelt/e_info_06okt_fl.pdf Problem: 4. Zenei

adók, parts: 1–4 [Accessed on: 28 June 2016]

http://dload.oktatas.educatio.hu/erettsegi/feladatok2006osz/emelt/e_info_06okt_fl.pdf

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

Because the task was known for secondary school teachers, they got a similar but new task.
Fortunately, the most recent task of final exam was usable.. There were tasks about shopping
baskets4: 1. Read data from file. 2. Determine the number of baskets. 3. List the products in the
first basket. 4. Find a given product; give the first, the last basket and the number of baskets you
find it in.

In the following two typical observations are given from every group (remarks and names of
variables are translated):

A1: “I do not plan in advance but write code immediately as I read the tasks.” However, the
name of a variable “searched” shows the programming theorem was detected.

while (i < z && !(Music[i].channel == 1 &&

 Music[i].track.substr(0,sLength) == searched))

A2: “I choose C# because I like this language.”… “I want to use LINQ to sum lengths”

char[] sep = { ':' };

int id = ch1.FindIndex(x=>x.id.Split(sep)[0] == "Eric Clapton");

B1: “I implemented calculating the song lengths in a separate function, however, to find the
artist, there is a built-in which can be used”

for (n=0;strncmp(m[ch[0][n]].track,"Eric Clapton:",13)!=0; ++n);

B2: “Thinking about the optimal use of memory, I read the file sequentially again and again,
because the problems given can be solved like this.”

for (i=0; i < n; i++){

 fgets(b,78,f);

 /* … */

 if(!strcmp(tunes[x-1],"Omega:Legenda"))

 break;

}

C1: “It seems to me that R language would be the best choice”

first <- min(which((dat$perf=="Omega") & (dat$song=="Legenda")))

C2: “Is it required to test if the input is correct?” “I started to solve the problem in PowerShell.”
“Filter the list of songs for Eric Clapton.”

D1:

for (int i = 0; i < custList.Count; i++){

 if (first == -1 && custList[i].Prod(prodname)) first = i;

 if (custList[i].Prod(prodname)){last = i; count++;}

}

D2a: First solution

int j = 0;

while (baskets[i,j] != null && baskets[i,j] != productName) j++;

D2b: “But this is more elegant:”

if (baskets[i].Contains(productName))

We can see that there are many solutions using the advanced methods of the programming
language instead of writing search algorithms. Other solutions were based on selection, which
derives from the fact that the task asked for both first and last occurrence. Educators of BME
mostly wrote for() loops for search and sometimes used break statements. Educators of ELTE
and teachers who searched for first and last occurrence separately used while() loops. The latter
two constructs highlight the difference in the way of thinking of the two groups: simplified

4 http://dload.oktatas.educatio.hu/erettsegi/feladatok_2016tavasz_emelt/e_inf_16maj_fl.pdf

Problem 4. Ötszáz” [Accessed on: 28 June 2016]

http://dload.oktatas.educatio.hu/erettsegi/feladatok_2016tavasz_emelt/e_inf_16maj_fl.pdf

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

pragmatic and algorithm-driven. The third one deducts the problem to the selection of advanced
tools.

3 Typical Solution of Linear Search Written by Students

There are different methods to teach and learn programming but every method and every learning
path contains search tasks. We observed secondary school students who had learnt the basic
control flow statements. They had been taught some programming theorems and solved a few
tasks in group-work. Students had to solve some problem together and they were helped by the
teacher. Those who were successful in self-employed coding were asked to work alone at the start
of the search tasks. Thirty students were involved in this experiment.

Though some of them had learnt linear search algorithm and determination of the type of task
before, none of them noticed that the task is an example of search.

The true beginners asked for some help on how to start coding. They hesitated whether for()
or while() loop or maybe if() would be the best choice. Only two of them started with writing
if() others started with a for() loop. Five of them selected or counted all appropriate items.
Later they used a variable to store the answer. The main part of their solutions:

S1:

for (int i = 0; i < list.Count; i++)

 if («logical_expr»)list2.Add(item);

S2:

for (int i = 0; i < list.Count; i++)

 if («logical_expr») counter++;

Though they got the result somehow, they understood their solutions were not optimal.

Other seven students were found who stopped at the body of the if() and asked what to do
at this point. As they were not separated from classmates, three of them got help from advanced
programmers. At this state, all classmates suggested the break instruction. “Wow, it works!” Like
a miracle cheat code, the use of break instruction spread among other students. In this way, twelve
students finished their code as follows:

S3:

for (int i = 0; i < list.Count; i++)

 if («logical_expr»){answer = i; break;}

There were only four students who got help from the teacher while thinking about what to
write into the body of if(). They learnt how to transform the «logical_expr» into for()
statement:

S4:

int i;

for (i = 0; i < list.Count && !(«logical_expr»); i++);

It has to be noted that these students did this transformation without any prior practice in
negation of Boolean expression. They learnt it as formal transformation, which they proved in
details. They understood the code, but could not express it in spoken words.

Two of them were open to more code transformation. Their final version was like this:

S5:

int i=0;

while (i < list.Count && !(«logical_expr»))

 i++;

However, as an extra advantage, the advanced programming students, who helped their
classmates earlier, learnt this transformation as well.

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

Many students learn programming in their extra lessons. The most popular topics are
developing games on a mobile or on the web. They learn how to use predefined tools. They solve
search problems very fast, because they use the built-in tools of the language:

S6:

var solution = list.Contains(«logical_expr»);

Teachers need to make extra effort to explain to these students why it is important to know
how the Contains() method works, why they should implement their own Contains()
function.

Interviewing students who had learnt while() loop before, about why they do not use the
while() loop instead of for(), they mentioned two main points:

1. The task was similar to selection
2. The condition of while() loop was too difficult, using for() loop is more handy to

use and the condition of if() is easier to write separately.

Examining what “difficult” and “handy” mean in this context we found that the spoken
language influences the programmer's thinking. When talking about searching in Hungarian, we
“scan the elements to the end”. The same method in English is expressed as “sequentially check
each element“. Both expressions include the meaning of “from the first to the last”. That is the
reason why students feel more confident using for() rather than while(). The popularity of
break instruction also has a linguistic reason. The checking is in progress “until a match is found”.
The task in the body of for() loop is “if a match is found…”. Learners see that “is found” does
not involve the negation of the condition, but must break the further checking, the further
scanning. They ask for an escape, and the break instruction solves their problem. Although
teachers and professionals know that break instruction is not advised in many situations, years of
practice are needed for the students to understand this.

Eliminating the break instruction is a coding technique, a formal rewrite of code. It includes
the negation of the “is found” condition. Inserting this condition into the head of for() loop, the
form of logical expression is “not end AND not found”, where “not found” could be a complex
logical expression. In order to understand the resulting expression one has to practice the use of
De Morgan’s laws. Should they accept them blindly and use formal transformation without actually
understanding what they do? We have to understand that implementing the linear search algorithm
in a structured manner (ie. without the break instruction) requires high-level thinking skills in
mathematical logic. At this point, we have to note that learning mathematical logic is part of Maths
curriculum but typically later and more formal than it needs while learning programming.
Therefore, the mathematical logic and the De Morgan’s laws should be a main part of Informatics
curriculum.

The complexity of the condition could be reduced by implementing it in a separate function.
This way the “not found” would mean an evaluation of the logic function. However, this solution
expects the learning of function’s declaration earlier than practicing problem solving using linear
search. This learning path also has many pitfalls related to function argument passing, references,
global and local variables.

4 Developing Step by Step or Stop

Students who know and like to use built-in search methods (S6) say that using these methods is
easier and faster. Professionals say built in methods are practical (A2, C1, C2), teachers say it is
elegant (D2b). In the teaching context, this solution could be the first state of exploring (analysing)
the linear search algorithm, or the last state when learners can implement their own searching
algorithm.

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

The main steps and key stages of learning path of linear search are as follows:

1. The first step is to understand the task and the meaning of the algorithm. The solution of the
search problem is to find an application, a tool that implements this algorithm and gives the
proper answer. In this sense using MATCH() function of spreadsheets, write an SQL query,
use built-in methods or dedicated software are similar.

2. The second step is to code an algorithm, which solves the search problem. In this learning
phase, any algorithm is acceptable which gives the right answer. (B2, S1, S2, S3) The
suboptimal selection or counting algorithms and using the break instruction are also
acceptable.

3. The third step is to learn how to write structured and optimal implementation. Depending on
the programming language, the usage of control statements could be different (A1, B1, B2,
D1, S4, S5). The key task here is the development of logic skills. The students have to practice
the negation of Boolean expression and the application of the De Morgan’s laws.

4. The fourth step is the synthesis of linear search problems. Learners recognise and write
general-purpose functions for linear search.

The learning process could start in the elementary school by analyses and end on professional
level with synthesis. Unfortunately, having reached each level, students’ answer to the question
“Can you solve linear search problem” is “Yes, I can.” Therefore the next step of development is
not motivated, the learning process breaks. However, we believe that each step is necessary, and
omitting any of them can result in shallower understanding and worse programming skills.

On the other hand, linear search is mentioned in public educations’ curriculum but the level
of knowledge is not defined. It means the curriculum’s criteria are performed without knowing the
required level. Therefore, the teaching-learning process of programming could stop on the first
level in context of linear search, and that is a lower level than the required one for an educated
person in a digital society.

We have to make it clear that learning linear search includes the improvement of the most
important thinking skills, like logic thinking and computational thinking. Therefore, the step to the
third level is highly recommended for every member of public education but it expects prepared
logic skills, time and effort to practice thinking.

The stop at the second level could result in a huge crowd of home-coders, who write
suboptimal and unreadable code, and that is really harmful for the programmers’ profession. The
next example is a snapshot of a program that was written by a home-coder student and
demonstrates the unlimited using of break. The task is to write the distance travelled of a tour
guide’s first workday on a week to the console:

private static void first() {

 for (int j = 1; j < 8; j++) {

 for (int i = 0; i < works.Count; i++) {

 if (works[i].day == j && works[i].id == 1) {

 Console.WriteLine(works[i].distant);

 break;

 }

/* first try, but I can compact the code

 if (works[i].day == 2 && works[i].id == 1) {

 Console.WriteLine(works[i].distance);

 break;

 }

 if (works[i].day == 3 && works[i].id == 1) {

 Console.WriteLine(works[i].distance);

 break;

 }

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

*/

 }

 }

}

The first thoughts: “I check each element and if I find that the day equals 1, I finish. Maybe
the tour guide had holidays; I have to do the same with the 2nd, 3rd… days. I can compact it into a
loop. The loop of days should be the outermost one.” After testing this code the student made
more changes, added a new Boolean variable and one more break.

We must also note that the unreadable, messy nature of a code snippet, which contains the
break instruction, is not always caused by the break instruction itself. Consider the example
below. The next student wanted to implement some kind of a cache, in which elements are to be
inserted if they are not already present:

for (int i = 0; i < cacheditems.size() or

(cacheditems.push_back(make_pair(item, 1)), false); i++) {

 if (cacheditems[i].first == item){

 cacheditems[i].second++;

 break;

 }

}

The code misuses the shortcut behaviour of the logical or operator, to make sure that the new
element is inserted to the container only once, even though the push_back() call is inside the
loop, moreover in the loop condition. This is a clear violation of the command-query separation
principle [10], which can also be applied to this very simple algorithm as well. Any programmer
expects a for() loop to look and work like this:

for (command; query; command)

Simply because by convention, the second expression should not have any side-effect.
However, the for() loop of the student worked like this:

for (command; command; command)

This is the most prominent mistake here, not the usage of the break instruction. The code
could easily be rewritten like this:

int i;

for (i=0; i < cacheditems.size(); i++)

 if (cacheditems[i].first == item)

 break;

if (i < cacheditems.size())

 cacheditems[i].second++;

else

 cacheditems.push_back(make_pair(item, 1));

The revised version still has a break, but it is now quite readable, and the subproblems
(finding the item in the cache and then modifying it accordingly) are coded separately. We asked
the student, what the idea behind this solution was:

“I don’t like if() after the loop, I want to give the answer in the loop. I found a similar code
snippet on the web:

fopen($file) or die("500 Internal Server Error");

I like it. What is the problem with this solution?”

In cases like the above, simply forbidding the students to use the break instruction will not
help their understanding. The problem is not the misuse of the break, but the lack of knowledge
of general code organizing methods and idioms, which are not related to the break instruction at
all.

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

Conclusion

Exploring the teaching-learning process and using linear search, we found that the learning practice
breaks along the quality of problem solving: to find a solution, to code a runnable program, to
write optimised code, to code a general solution. The use of break statement seems to be
necessary at a definite point of the learning process, because it expresses a novice programmer’s
way of thinking. However, over-using the break instruction is harmful, therefore learning (and
teaching) higher level of programming skills is highly recommended not only for professional
training but for public education, too. Coding linear search improves not only programming
knowledge but also thinking skills, where the higher levels of solutions involve higher level of
logical, mathematical and computational thinking. To get higher level of skills is a qualitative step,
which requires the teaching of the additional concepts and principles. Therefore, the aim of public
education in context of linear search should be that students are able to write a readable and
optimized code, according to the rules of structured programming.

Bibliography

[1] SZLÁVI, P. and ZSAKÓ, L. Methods of teaching programming. In: Teaching mathematics and
Computer Science, vol. 01(2), pp. 247–258., 2003. DOI: 10.5485/TMCS.2003

[2] DIJKSTRA, E. W. Letters to the Editor: Go to Statement Considered Harmful. In:
Communications of the ACM, vol. 11, no. 3, pp. 147–148, 1968. DOI:
10.1145/362929.362947

[3] MARTIN, R. C. Clean Code: A Handbook of Agile Software Craftsmanship. NJ, USA, Prentice
Hall PTR, 2008. ISBN: 978 013235088 4

[4] CAS Community Using break and continue in loops. Computing at School, 06 2014. [Online].
Available: http://community.computingatschool.org.uk/forums/63/topics/2835
[Accessed on: 28 June 2016]

[5] Informatika tanári levelező lista Kiugrás feltételes ciklusból. Sulinet, 04 2016. [Online].
Available: http://lista.sulinet.hu/mailman/private/informatika/2016-April/021186.html.
[Accessed on: 28 June 2016]

[6] Informatika tanári levelező lista Programozás eldöntés. Sulinet, 05 2016. [Online]. Available:
http://lista.sulinet.hu/mailman/private/informatika/2016-May/021668.html. [Accessed
on: 28 June 2016]

[7] PAPP, G., HORVÁTH, G., SZLÁVI, P. and ZSAKÓ, L. Programozási alapismeretek 4.
előadás. ELTE IK, Budapest, 2015. [Online]:
http://progalap.inf.elte.hu/downloads/eloadas/progalap_ea4.zip [Accessed on: 28 June
2016]

[8] CZIRKOS, Z. Programozási tételek. BME EET, Budapest, 2015. [Online]:
https://infoc.eet.bme.hu/ea03/ [Accessed on: 28 June 2016]

[9] SZALAYNÉ TAHY, Zs. and CZIRKOS, Z., “ProgAlap” és ami mögötte van.
8. InfoDIDACT, Zamárdi: Webdidaktika Alapítvány, 2015. ISBN: 978 963123892 1

[10] MEYER, B. Object-oriented Software Construction (2Nd Ed.), NJ, USA: Prentice-Hall, Inc.,
1887. ISBN: 0-13-629155-4

Lectured by: Sándor Király, PhD, associate professor

http://community.computingatschool.org.uk/forums/63/topics/2835
http://lista.sulinet.hu/mailman/private/informatika/2016-April/021186.html
http://lista.sulinet.hu/mailman/private/informatika/2016-May/021668.html
http://progalap.inf.elte.hu/downloads/eloadas/progalap_ea4.zip
https://infoc.eet.bme.hu/ea03/

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

Contact address:

Zsuzsanna Szalayné Tahy

Department of Media and Educational Informatics, Faculty of Informatics, Eötvös Loránd University, H-
1117 Budapest, Pázmány P. sétány 1/C, Hungary,

e-mail: sztzs@caesar.elte.hu

Zoltán Czirkos, Ph.D,

Department of Electron Devices, Faculty of Electrical Engineering and Informatics, Budapest University
of Technology and Economics, H-1117 Budapest, Magyar tudósok körútja 2.

e-mail: czirkos@eet.bme.hu

